大数据技术与应用专业介绍

发布者:工程学院发布时间:2019-04-29浏览次数:1347

大数据技术与应用专业介绍

专业代码:610215

1.专业背景

近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。当下,大数据从业人员的两个主要趋势是:(1)大数据领域从业人员的薪资将继续增长;(2)大数据人才供不应求。

  2.培养目标

本专业培养思想政治坚定、德技并修、全面发展,具有一定的沟通和团队协作能力、良好的职业道德和工匠精神、一定的软件工程职业素养和逻辑思维能力。掌握大数据基本理论、方法与技术技能,面向IT行业或企事业单位从事大数据系统搭建与运维、大数据获取与存储、大数据处理与分析等工作的高素质技术技能人才。毕业35年后可以成为大数据研发工程师、大数据架构工程师或大数据挖掘工程师。

1 培养目标及培养规格

目标

规格

素质目标

1.树立正确的世界观、人生观、价值观,具备良好的人文社会科学素养。

2.在工程实践中自觉遵守职业道德和规范,具有法律意识、规则意识和工作责任心。

3.有健康的体质、良好的心理素质和社会责任感,具有思辨能力。

4. 能够尊重多元观点,与团队成员进行有效的沟通。

5. 具备全局观念,能够胜任团队成员的角色,具有较强的执行力。

6具备问题探究和创新意识,了解基本的创新方法。

知识目标

1.具备从事云计算和大数据技术等活动所需的数学等基础科学知识

2. 具备计算机软、硬件系统的基本理论和基本技能

3. 具备大数据基本理念、基本方法和技能

4具备大数据平台搭建与维护及调优的基本知识和技能

5.具备常用的数据挖掘算法和编程语言的基本知识和技能

6.具备主流的Hadoop处理技术的基本知识和技能

7.具有SQL的计算与存储过程调优的基本知识和技能

8.初步掌握大数据项目管理的基本知识、规范、方法和工具

能力目标

1.能够运用现代信息技术及工具查阅专业文献、获取专业知识,并将其运用于工程实践中的能力

2.运用计算机科学解决实际问题的能力

3.具备数据采集、数据清洗、数据分析、数据可视化以及大数据应用系统软件开发的能力

4.具有运用大数据知识解决专业领域实际问题的能力

5.具有严密的逻辑分析能力,具备较强的文档编写和良好的沟通表达能力

7.具备终身学习的知识基础,通过自主学习方法,提升专业能力

8具备制定学习、工作计划,并付诸实践,进行自我管理和评价的能力。

3.专业岗位群

根据信息技术行业人才需求,确定大数据技术与应用专业毕业生主要面向IT行业及各企事业单位及政府机关,毕业生主要就业的岗位是大数据运维、大数据分析、大数据可视化、大数据研发、大数据架构、数据仓库、大数据挖掘等岗位。

2 大数据技术与应用专业专业岗位群

职业岗位

主要工作任务

职业能力

大数据运维

大数据平台的搭建和维护

大数据平台的调优

大数据平台的管理和监控

熟悉大数据分析模型,具有数据敏感度,能从海量数据中分析挖掘问题;

熟练运用SQL/Excel/Access/PPT等数据可视化工具;

具备大数据分析问题的思路及方法,能够把合理的思路成功应用于实践;

熟悉客户关系管理分析及数据化运维方法;

熟悉大数据平台开发基础技术;

了解数据挖掘算法、数据分析及建模方法;

熟悉数据管理和治理方法。

大数据分析

数据采集及数据处理工作

对数据进行整理规划

编写数据说明文档,明确客户方的业务体系

对基于HadoopSpark的数据分析和处理有一定的经验;

熟悉一门以上开发语言(PythonScaleJava)、熟悉主流MySQLOracle数据库,对主流分布式存储和运算有一定的了解和项目经验;

熟练使用SPSSSAS或其它数据挖掘软件,具备一定数据建模和分析理论知识和经验,熟悉常用数据结构和数据处理算法。

大数据可视化

大数据可视化开发

Web可视化开发

优化数据的展示和设计工作

熟悉主流可视化产品,熟练使用TableauEchartsD3等产品,了解开源可视化工具;

了解OracleMysql等传统数据库应用;

熟练使用EXCEL工具;

精通web图形的渲染技术(SVGCanvasWebGL等);

精通HTML5CSSJQueryJS等技术。

大数据研发

大数据产品建设与开发

大数据项目的需求分析与设计

数据库架构设计及数据库详细设计

大数据业务模型的构建

具备Linux操作系统基础;

熟悉JAVA/Python开发语言;

精通hadoop生态系统组件,熟悉大数据平台性能监控及调优方法;

精通storm流式数据处理框架技术;

精通spark内存计算框架技术;

熟悉数据处理流程,熟悉大数据平台部署环境及步骤。

大数据架构

大数据全局技术规划设计

大数据平台的架构设计和开发集成

大数据的数据整合、存储设计和规划

精通大数据平台集群部署、组件的特性和整体的调优;

熟悉数据处理流程,并具备大数据项目实战经验;

精通大数据平台开发技术及优化措施;

系统设计、编码能力&快速trouble-shooting的能力;

了解数据科学相关算法(分类、聚类、回归等)

项目实战经验丰富。

数据仓库

数据仓库需求调研和分析

数据仓库ETL规则和程序的设计和开发

数据仓库、数据集市的数据模型设计

数据的采集、加工、清洗和转换,数据的管控和治理

熟悉数据仓库各类模型的建模知识;

数据仓库的分层架构、3NF和多维数据模型设计;

熟悉HiveDB2TeradataGreeenplum原理知识,并且会调优;

熟悉Linus操作系统及JAVA/Python语言;

熟悉数据库原理(例如:PostgreSQLMysqlOracleDB2sqlServer等);

熟练使用ETL工具;

熟悉数据仓库的架构。

大数据挖掘

常规数据报告的制定与信息挖掘

根据公司战略需要进行数据建模

熟悉挖掘算法与数据结构;

熟悉常用编程语言及开发场景;

精通数据挖掘常用算法及使用场景;

数据大数据平台及其各组件开发;

熟悉数据处理流程;

熟练应用数据挖掘工具(SPSSSAS等)。

4.专业特色

引入华为大数据平台和课程资源,建立大数据人才培养基地。与浙江华为通信技术有限公司签订合作协议,建成大数据实验室,建立大数据人才培养基地。

 

 

依托校内、校外两种类型实训基地,专任教师和企业工程师协同培养学生,坚定不移地走“产教融合、校企合作、工学结合”之路,多层次、多形式与企业开展合作,把企业生产过程融合于专业教学过程,专业课程内容与职业标准对接,专业标准与企业标准对接,企业全程参与人才培养方案制定、课程体系设计和教学过程实施。

充分利用华为师资力量,对学校师资进行华为大数据技术培训,引入最先进的企业技术,在完成教学计划规定的课程学习任务的同时,通过华为大数据工程师认证,通过案例引导,激发学生的兴趣,以真实的工程实例进行教学,教学实例和企业项目相对接,达到学生毕业后零障碍上岗就业。

5.核心课程

将典型工作任务的职业能力结合岗位所对应的职业资格的要求,归纳出大数据技术与应用专业的大数据技术和Hadoop环境搭建、Hadoop生态核心、网络爬虫和数据挖掘、数据仓库技术、可视化工具应用等等5个行动领域,转换成5门对应的专业学习领域核心课程。每门核心课程选取若干项目或任务作为教学的载体,职业工作过程融合在项目或任务训练中。

 

 

6.师资队伍

本专业拥有一支以教授为专业带头人的高水平教科研队伍,团队成员大部分都拥有硕士以上学位,其中博士1人,江苏省青蓝工程学术带头人1人,江苏省青蓝工程学术骨干人才1人,淮安市533英才工程第三层次培养对象2人,淮安市十百千第二层次培养对象1人。团队科研实力雄厚,承担省市级以上课题20余项,获淮安市科学技术进步奖1次,淮安市自然科学优秀论文3篇,在中文核心期刊上发表论文30余篇;教学方面成果丰硕,获学院教学成果奖3项。

  

7.教学环境

大数据技术与应用专业拥有一流的教学环境,拥有华为大数据实训基地、网络实验室、计算机组装与维护、网络综合布线实验室、诺顿网络实验室、软件实验室和创新实验室等,能够满足教学和学生课余时间自主学习的需要,在实验室中均配有空调,现代化多媒体教学设备。

 

8.优秀学子

大数据技术与应用专业以学生技能大赛为抓手,通过以赛促教、以赛促学、赛教学结合,全面推进教育教学改革,探索具有自身特色的“一体两翼、四轮驱动”(以技能竞赛为载体,以赛促教和以赛促学为两翼,完善组织管理制度、对接社会需求、提高实践技能水平、打造“双师”队伍为动力)的教学模式。以技能大赛为载体,开发实践教学资源,促进实践教学改革,提高人才培养质量。

6 获得CCIEH3CTE认证学生一览表

序号

姓名

性别

班级

证书编号

获证时间

1

夏紫东

14级计算机应用班

CCIE#52046

2016.3.7

2

张雨

14级计算机应用班

CCIE#54242

2016.9.28

3

黄杨

15级计算机应用班

CCIE#55401

2017.1.13

4

李朋

15级电气自动化班

CCIE#55804

2017.2.27

5

胡坚

15级机电一体化班

CCIE#55822

2017.2.28

6

穆建明

15级模具

CCIE#55823

2017.2.28

7

张超男

14级计算机应用班

CCIE#55824

2017.2.28

8

马恺

15级汽车

CCIE#55985

2017.3.22

9

王曦

14计算机网络

CCIE#56224

2017.427

10

张帅

15机电一体化班

CCIE#56612

2017.619

11

徐宁

14计算机应用

CCIE#56631

2017.622

12

马志俊

16计算机应用

CCIE#56927

2017.82

13

汪彦旭

15机电一体班

CCIE#56929

2017.82

14

王威

16计算机应用

CCIE#56930

2017.82

15

包依林

16计算机应用

CCIE#56934

2017.83

16

王浦仪

16计算机应用

CCIE#56947

2017.84

17

黄育栋

16计算机应用

CCIE#56946

2017.84

18

徐康靖

16计算机应用

CCIE#58075

2018.1.9

19

王庆责

14计算机应用

CCIE#58077

2018.1.9

20

赵晨轩

15计算机应用

CCIE#58629

2018.3.16

21

梁天航

16数控

CCIE#58630

2018.3.16

22

苏广焱

16电气

CCIE#58641

2018.3.17

23

刘小春

16汽车

CCIE#58760

2018.3.27

24

仲明明

15计算机应用

CCIE#58780

2018.3.28

25

周佳

15计算机应用

CCIE#58783

2018.3.28

26

郑秀芳

16计算机应用

CCIE#59776

2018.8.10

27

侯威

17电子电气

CCIE#59924

2018.8.10

28

刘虎

17计算机应用

CCIE#59928

2018.8.10

29

孙辉

17计算机应用1

CCIE#61428

2019.2.28

30

刘勇

15计算机应用

CCIE#61441

2019.2.28

9.学历提升

现已开设“专接本”班,本专业采用“专本连读”培养方式,将自考本科的部分课程嵌入专科阶段培养计划,以本科标准培养专科学生,保证学生在完成专科阶段的学习任务并获得专科毕业证书后,第四学年即可获得南京航空航天大学或苏州大学的自考本科学历、学士学位;也可参加每年的江苏省“专转本”入学考试,考试通过的毕业生,在本科院校再经两年的学习,可获得本科文凭、学士学位。

  

10.就业去向

大数据技术与应用专业与企业深度合作、对接企业岗位,培养面向IT行业或企事业单位从事大数据系统搭建与运维、大数据获取与存储、大数据处理与分析等工作的高素质技术技能人才。学生毕业3~5年后可以成为大数据研发工程师、大数据架构工程师或大数据挖掘工程师。